

Why ePrescribing should be supporting patient care

Professor Tony Avery

Professor of Primary Care
and Dean of Nottingham Medical School

NEC, Birmingham
23rd February 2010

Why ePrescribing should be supporting patient care

Tony Avery
Professor of Primary Health Care
University of Nottingham

Why electronic prescribing?

- We have a major problem in terms of medication errors and dangerously inadequate communication about medicines
- There is evidence of benefit from electronic prescribing systems
- While electronic prescribing has been the norm in UK general practice for many years, it will be introduced to increasing numbers of NHS hospitals in the coming years
- There are still challenges ahead and much to learn in terms of a successful design and implementation of new systems

What is electronic prescribing?

- The utilisation of electronic systems to:
 - facilitate and enhance the communication of a prescription or medicine order
 - aid the choice, administration and supply of a medicine through knowledge and decision support
 - provide a robust audit trail for the entire medicines use process

Connecting for Health Electronic Prescribing Baseline Specification

Getting to the heart of the matter...

- What do we now know about medication-related morbidity?
- What is the potential for electronic prescribing to improve patient safety?
- What is the evidence for the benefits (and harms) of electronic prescribing?
- What are the challenges for introducing high quality electronic prescribing into hospitals?
- Overall, will electronic prescribing improve quality and safety for patients?

Professor David Bates

- Professor of Medicine, Harvard University
- Chief of Division of Internal Medicine, Brigham and Women's Hospital

What do we know about medication related morbidity?

- A meta-analysis of studies from the USA estimated that 100,000 deaths per year were due to adverse drug events making this the 4th-6th leading cause of death
- A systematic review has shown that one in 15 hospital admissions is drug-related and 60% of these are preventable
- A UK study of 18,820 patients admitted to hospital suggested 6.5% were related to ADRs accounting for 4% of bed days and costs (in 2004) of £466m per year

Drugs associated with preventable hospital admissions

- The following drug groups are associated with over 50% of preventable medication-related admissions
 - Antiplatelets
 - Diuretics
 - Non-steroidal anti-inflammatory drugs
 - Anticoagulants
- A further 8 groups of drugs are associated with an additional 30% of admissions
- BJCP 2007; 63: 136-147

Preventable adverse drug events in secondary care

- The following drug categories are associated with 66% of preventable adverse events
 - Cardiovascular drugs 18%
 - Psychoactive and CNS drugs 15%
 - Analgesics 13%
 - Anticoagulants 10%
 - Drugs used for infections 10%
- A further five groups of drugs are associated with an additional 17% of adverse events

Do we need e-prescribing when we already know which drugs are associated with harm?

- While an argument can be made for improving prescribers' knowledge of the drugs most commonly associated with harm:
 - There are multiple underlying causes and lack of knowledge is not the most important of these
 - Many of the underlying problems lend themselves to a computerised solution
 - But remember that communication problems contribute to many adverse events and not all of these can be tackled by computers!

Medication-related morbidity – how might e-prescribing help?

- We have identified 20 different types of computer function that might prevent the most common and serious medication-related adverse events:
 - Getting the right dose
 - Preventing:
 - contraindicated prescribing
 - hazardous drug-drug interactions
 - prescribing a drug that a patient is known to be allergic to
 - Prompting for the need to:
 - undertake tests (or check tests that have been done) prior to the initiation of treatment
 - undertake essential monitoring
 - co-prescribe medication to reduce risks to patients

Main strategies for preventing errors and adverse events using IT

- Tools to improve communication
- Making knowledge more readily accessible
- Requiring key pieces of information
- Assisting with calculations
- Performing checks in real time
- Assisting with monitoring
- Providing decision support

What is the evidence for the benefits and harms of electronic prescribing?

- Numerous studies, and several systematic reviews, suggest benefits
- Some studies, and reports, have suggested harm

What evidence supports the use of computerised alerts and prompts to improve prescribing behaviour?

- Systematic review for NHS Connecting Health: JAMIA 2009; 16 (4): 531-538
- Collaboration between Nottingham, LSP and Harvard
- Search identified 14,137 publications and 20 of these were considered suitable for the review
- The 20 publications included 27 assessments of the effectiveness of different types of alert and prompts

Location and types of study

- 18 of the studies were from the USA
- Five studies took place in primary care or outpatient settings; the remaining 15 in hospitals
- Four studies evaluated clinical outcomes
- Cost savings were reported in two studies
- Only four of the studies were randomised trials

Results

- There was statistically significant improvement in prescribing behaviour (or reduction in errors) for 23 of the 27 alerts assessed
- In some cases the reductions in error rates were substantial
- There was no evidence of harm from the other four alerts assessed

Comprehensive systems of alerts and prompts

- All four evaluations showed statistically significant improvements
 - Two large studies showed reductions in serious medication errors of 55% and 86%

Basic alerts

- Drug allergy warnings decreased allergy error events by 56%
- Providing default dosing reduced dosing errors by
 - 23% in one study
 - 71% in another
- There was a 40% reduction in error rates achieved by drug-drug interaction warnings, but this did not reach statistical significance

Drug-condition alerts

- Increased rates of prescribing for venous thromboembolism prophylaxis in patients at risk
- Reduced the prescription of non-recommended drugs in older people

Drug-lab alerts

- Reduced the use of contraindicated medication in renal failure
- Reduced hazardous prescribing by 50%
- Enhanced prescribing of appropriate electrolyte supplements

Comments on the review

- Few RCTs
- Findings most relevant to:
 - Secondary care
 - USA (where 11% of medication errors come from transcribing physicians' clerking notes onto the drug chart)
- Publication bias likely
- Nevertheless:
 - Some of the improvements demonstrated were substantial
 - Appears to be a link between careful design and implementation of systems and their success in improving patient safety
 - Latter point is backed up by other systematic reviews and descriptive studies

What about harmful effects from e-Prescribing?

- No studies fulfilled inclusion criteria for our review but...
 - Bates 1999: in early stages of implementation there were problems with potassium ordering
 - University of North Carolina 2005: increased errors, partly due to staff being unfamiliar with the new system, but mainly due to better data capture
 - Koppel 2005: found that a commercial EP system facilitated 22 error types due to:
 - fragmentation of data
 - lack of integration of the components of the system
 - Poor design of the human-computer interface
- Bottom line: if the system is not well designed and is poorly implemented then there are likely to be risks to patients:
 - Every system is designed perfectly to achieve the results it gets
 - Don Berwick

Cedars-Sinai ePrescribing Implementation

- One of the leading hospitals in U.S.
 - Deep experience with IT, and talent, especially ICU
 - Many providers—about 700 physicians on the private staff
 - Care for many of the wealthiest patients in Beverly Hills area
- Co-developed own CPOE application with a small vendor
- Had extensive preparation

Results of Implementation

- Implementation failed
 - Application had to be turned off, even though it was working
- Physicians complained bitterly
 - Said that too much unnecessary decision support was being displayed
 - Was slow
 - Didn't fit workflow

Some Key Decisions

- Drug-drug interactions were set up as 0-1, so that they had to be all on, or off
 - Couldn't change how many were displayed
 - Physicians felt far too many were being shown
- Leadership told team they would fix problems as they went, while leaving system live

Post-Mortem Analysis

- If Cedars could fail, anyone can
 - Tremendous resources, great team
 - At the same time, several key decisions probably should have been made differently
 - Environment very challenging with so many private staff physicians
- Highly desirable to avoid a failure like this!

What are the challenges of introducing high-quality electronic prescribing into hospitals in the UK?

- Many hospitals have relatively little experience of use of IT in clinical care
- Introducing electronic prescribing effectively is going to be a major complex process for these hospitals
- Clinicians may be sceptical about the:
 - suggested benefits
 - ability of IT providers to deliver
 - chances of successful implementation in their hospital

Facing the challenges

- What has NHS connecting for health been doing?
- What are the experiences of other hospitals in the UK that have introduced electronic prescribing?
- Lessons from the US

What has NHS Connecting for Health been doing?

- Draft design specification for safety features required by NHS electronic prescribing systems
 - Systematic reviews
 - Expert panel
 - Delphi consensus process
 - National consultation...
- ePrescribing functional specification for NHS trusts, 2007
- Electronic Prescribing Systems Evaluation, 2009
- Strategy to support successful implementation of decision support for ePrescribing systems
- Assessment of lessons learnt from implementation of ePrescribing systems in the UK, 2009
- Dose Range Checking Guidance, 2009
- Hazard Framework for ePrescribing Decision Support, Feb 10

Experiences of UK hospitals that have implemented eP

- CfH Report due out in May 09
- Based on experiences of UK hospitals that implemented ePrescribing:
 - Home-grown: University Hospital Birmingham
 - Components of large hospital information system packages: Queen's Hospital Burton upon Trent using Meditech
 - Developments of pharmacy based systems: JAC and Ascribe
 - Clinical speciality based systems: systems used for ICU, oncology, parental nutrition

Perceived benefits

- Allowing prescribing from remote terminals/sites as well as at the bedside
- Providing prescribers with access to decision support
- Helping to support the use of a trust formulary
- Allowing access to electronic patient records (as well as medication records)
- Removing the need to rewrite medication charts, and the associated potential for transcription errors
- Supporting direct communication of prescribing information to pharmacy and other departments
- Allowing the easy and direct production of discharge prescriptions.

Challenges for implementation

- Overall, the introduction of eP needs to take account of how people interact with technology ("sociotechnical" approach)
 - Treating eP as a technical solution without addressing human factors is likely to result in failure
- Strong and committed multidisciplinary implementation team required
- 1-2 years required to make necessary preparations
- Need to engage with all relevant staff:
 - Changes in work practices will be required
 - An active and open approach is needed to learn how the system can be used to maximum benefit
- Do not underestimate:
 - How long procurement and installation of equipment and setting up software takes
 - The potential for the technology to fail!

Challenges for implementation

- The sequence and pace of rollout of eP into clinical areas needs careful consideration
 - After successful piloting, rollout to the rest of the hospital should be as fast as is compatible with safety
- After roll out the implementation team will need to be transformed into a support service

Challenges for implementation

- eP systems need to be managed throughout their lifetime:
 - Training of new staff
 - Maintenance and upgrade of software
 - Managing further innovation
- As people start to use an eP system it will result in various “work arounds”
 - The eP support team needs to monitor these and assess the extent to which they may be desirable and useful or may be dangerous

Lessons from the US

- 10 pitfalls from David Bates:
 - Preparation
 - Implementation
 - After implementation

Ten Pitfalls: Preparation

1. Don't recognize how big a change this truly is
 - Expensive
 - Huge process change!
2. Failure to sufficiently engage both administrative and clinical leadership
3. Failure to do necessary preparation with key stakeholders
 - Often takes 2 years to have all the key groups meet

Ten Pitfalls: Implementation

4. Going too fast early on—e.g. turning on whole hospital at once
5. Trying to fix previously existing policy problems at the time you implement
 - Easy to get stuck
6. Turning on too much decision support early on
 - Much better to phase in

Ten Pitfalls: After Implementation

7. Failure to provide users an easy mechanism for reporting on-going problems
8. Failure to make sufficient changes to application
9. Failure to devote sufficient resources to making changes to the application
 - Won't get value
10. Insufficient support for the underlying system
 - Keeping network up to speed
 - Having enough terminals

Summary

- ePrescribing has great potential to support in the provision of safe and effective patient care
- Overall the balance of evidence is in favour of the benefits of ePrescribing
- Nevertheless, considerable attention is needed to get the design, preparation, implementation and maintenance right!